Chemistry for the future

Dr Zoe Schnepp

Image

In the past, chemists were free to play with any element or molecule they wanted. Hazards such as bioaccumulation were unknown and, importantly, unexpected. Chemists busied themselves making devices, materials and medicines for the 20th century world with no idea of the problems these products might cause. In the process, chemistry (and chemicals) got a pretty dreadful reputation! Now we have to keep up with the demands and needs of a 21st century population, as well as find solutions to problems like the energy crisis. 

So what are the next challenges for chemistry? Energy is certainly the biggest in my opinion. There are numerous options, with solar being perhaps the most attractive. The energy will also need to be stored, which is another big area of research. Another area that is becoming really interesting is where we source our feedstocks. Most school-age children will learn about fractional distillation of crude oil to produce molecules for the chemical industry (as well as the major fraction going to fuels). If oil becomes scarce then we will need alternative feedstocks and again nature may provide the answer. There is a lot of attention in the media about biofuels but similar chemistry is also being used to make useful molecules for the chemical industry. Plant matter (biomass) can be broken down in a biorefinery to make a whole range of molecules that can then be used to produce the drugs, plastics and other materials we use in our everyday lives. 

A large challenge that I’ve mentioned briefly this week is resources. Elements that we use in devices and materials have to be sourced from the Earth. Many of these are mined from the Earth’s crust and some are present only in very small quantities. These scarce elements are expensive and several of them are becoming very important in modern technologies. Most importantly, some elements such as platinum or indium will become increasingly important in future technologies such as solar capture or fuel cells. Finding alternative ways to make these technologies work without rare elements is one possibility. In the meantime, the careful use of resources is essential. 

There are so many other challenges I could discuss here. If you are interested in reading further, there is some great information (and a white paper) on the webpage of the Royal Society of Chemistry.[i] Scientists have always been good at solving problems, that’s the main reason that most of us do research! I’d like to think that the big challenges of the future represent some great opportunities.


Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: